Semigroups of Möbius transformations

Matthew Jacques

Thursday 12th March 2015

- Joint work with Ian Short -
Contents

1 Möbius transformations and hyperbolic geometry
 ▶ Möbius transformations and their action inside the unit ball
 ▶ The hyperbolic metric

2 Semigroups of Möbius transformations
 ▶ Semigroups
 ▶ Limit sets of Möbius semigroups
 ▶ Examples

3 Composition sequences
 ▶ Escaping and converging composition sequences
 ▶ Examples

4 A Theorem on convergence
Contents

1. Möbius transformations and hyperbolic geometry
 - Möbius transformations and their action inside the unit ball
 - The hyperbolic metric

2. Semigroups of Möbius transformations
 - Semigroups
 - Limit sets of Möbius semigroups
 - Examples

3. Composition sequences
 - Escaping and converging composition sequences
 - Examples

4. A Theorem on convergence
Contents

1 Möbius transformations and hyperbolic geometry
 ▶ Möbius transformations and their action inside the unit ball
 ▶ The hyperbolic metric

2 Semigroups of Möbius transformations
 ▶ Semigroups
 ▶ Limit sets of Möbius semigroups
 ▶ Examples

3 Composition sequences
 ▶ Escaping and converging composition sequences
 ▶ Examples

4 A Theorem on convergence
Contents

1 Möbius transformations and hyperbolic geometry
 - Möbius transformations and their action inside the unit ball
 - The hyperbolic metric

2 Semigroups of Möbius transformations
 - Semigroups
 - Limit sets of Möbius semigroups
 - Examples

3 Composition sequences
 - Escaping and converging composition sequences
 - Examples

4 A Theorem on convergence
Möbius transformations are the *conformal automorphisms* of \(\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\} \).

That is, the bijective functions on \(\hat{\mathbb{C}} \) which preserve angles and their orientation.

Each takes the form

\[
 z \mapsto \frac{az + b}{cz + d}
\]

with \(a, b, c, d \in \mathbb{C} \) and \(ad - bc \neq 0 \).
Möbius transformations

Möbius transformations are the *conformal automorphisms* of \(\hat{\mathbb{C}} = \mathbb{C} \cup \{ \infty \} \).
That is the bijective functions on \(\hat{\mathbb{C}} \) which preserve angles and their orientation.

Each takes the form

\[
z \mapsto \frac{az + b}{cz + d}
\]

with \(a, b, c, d \in \mathbb{C} \) and \(ad - bc \neq 0 \).
We consider the group \mathcal{M} of Möbius transformations acting on $\hat{\mathbb{C}}$, which we identify with \mathbb{S}^2.

By decomposing the action of any given Möbius transformation into a composition of inversions in spheres orthogonal to \mathbb{S}^2, the action of \mathcal{M} may be extended to a conformal action on $\mathbb{R}^3 \cup \{\infty\}$.

In particular \mathcal{M} gives a conformal action on the closed unit ball, which it preserves.

This extension is called the Poincaré extension.
We consider the group \mathcal{M} of Möbius transformations acting on $\hat{\mathbb{C}}$, which we identify with \mathbb{S}^2.

By decomposing the action of any given Möbius transformation into a composition of inversions in spheres orthogonal to \mathbb{S}^2, the action of \mathcal{M} may be extended to a conformal action on $\mathbb{R}^3 \cup \{\infty\}$.

In particular \mathcal{M} gives a conformal action on the closed unit ball, which it preserves.

This extension is called the *Poincaré extension*.
We consider the group \mathcal{M} of Möbius transformations acting on $\widehat{\mathbb{C}}$, which we identify with S^2.

By decomposing the action of any given Möbius transformation into a composition of inversions in spheres orthogonal to S^2, the action of \mathcal{M} may be extended to a conformal action on $\mathbb{R}^3 \cup \{\infty\}$.

In particular \mathcal{M} gives a conformal action on the closed unit ball, which it preserves.

This extension is called the *Poincaré extension*.
We consider the group \mathcal{M} of Möbius transformations acting on $\hat{\mathbb{C}}$, which we identify with S^2.

By decomposing the action of any given Möbius transformation into a composition of inversions in spheres orthogonal to S^2, the action of \mathcal{M} may be extended to a conformal action on $\mathbb{R}^3 \cup \{\infty\}$.

In particular \mathcal{M} gives a conformal action on the closed unit ball, which it preserves.

This extension is called the \textit{Poincaré extension}.
The hyperbolic metric, $\rho(\cdot , \cdot)$ on \mathbb{B}^3

The hyperbolic metric ρ on \mathbb{B}^3 is induced by the infinitesimal metric

$$ds = \frac{|dx|}{1 - |x|^2}.$$

- From any point inside \mathbb{B}^3 the distance to the ideal boundary, \mathbb{S}^2, is infinite.
- Geodesics are circular arcs which when extended land orthogonally on \mathbb{S}^2.

The group of Möbius transformations that preserve \mathbb{B}^3 are exactly the set of orientation preserving isometries of (\mathbb{B}^3, ρ).
The hyperbolic metric, $\rho(\cdot, \cdot)$ on \mathbb{B}^3

The hyperbolic metric ρ on \mathbb{B}^3 is induced by the infinitesimal metric

$$ds = \frac{|dx|}{1 - |x|^2}.$$

- From any point inside \mathbb{B}^3 the distance to the ideal boundary, \mathbb{S}^2, is infinite.
- Geodesics are circular arcs which when extended land orthogonally on \mathbb{S}^2.

The group of Möbius transformations that preserve \mathbb{B}^3 are exactly the set of orientation preserving isometries of (\mathbb{B}^3, ρ).
The hyperbolic metric, $\rho(\cdot , \cdot)$ on \mathbb{B}^3

The hyperbolic metric ρ on \mathbb{B}^3 is induced by the infinitesimal metric

$$ds = \frac{|dx|}{1 - |x|^2}.$$

- From any point inside \mathbb{B}^3 the distance to the ideal boundary, \mathbb{S}^2, is infinite.
- Geodesics are circular arcs which when extended land orthogonally on \mathbb{S}^2.

The group of Möbius transformations that preserve \mathbb{B}^3 are exactly the set of orientation preserving isometries of (\mathbb{B}^3, ρ).
The hyperbolic metric, $\rho(\cdot, \cdot)$ on \mathbb{B}^3

The hyperbolic metric ρ on \mathbb{B}^3 is induced by the infinitesimal metric

$$ds = \frac{|dx|}{1 - |x|^2}.$$

- From any point inside \mathbb{B}^3 the distance to the ideal boundary, \mathbb{S}^2, is infinite.
- Geodesics are circular arcs which when extended land orthogonally on \mathbb{S}^2.

The group of Möbius transformations that preserve \mathbb{B}^3 are exactly the set of orientation preserving isometries of (\mathbb{B}^3, ρ).
Möbius transformations and hyperbolic geometry

The hyperbolic metric

Matthew Jacques (The Open University)

Semigroups of Möbius transformations

Thursday 12th March 2015
Möbius transformations and hyperbolic geometry

The hyperbolic metric
Aside from the identity, there are three types of Möbius transformation.

- **Loxodromic transformations**
 Conjugate to $z \mapsto \lambda z$ where $|\lambda| \neq 1$.
 Have two fixed points, one attracting and one repelling.

- **Elliptic transformations**
 Conjugate to $z \mapsto \lambda z$ where $|\lambda| = 1$.
 Have two neutral fixed points.

- **Parabolic transformations**
 Conjugate to $z \mapsto z + 1$.
 Have one neutral fixed point.
Aside from the identity, there are three types of Möbius transformation.

- **Loxodromic transformations**
 Conjugate to \(z \mapsto \lambda z \) where \(|\lambda| \neq 1\).
 Have two fixed points, one attracting and one repelling.

- **Elliptic transformations**
 Conjugate to \(z \mapsto \lambda z \) where \(|\lambda| = 1\).
 Have two neutral fixed points.

- **Parabolic transformations**
 Conjugate to \(z \mapsto z + 1 \).
 Have one neutral fixed point.
Aside from the identity, there are three types of Möbius transformation.

- **Loxodromic transformations**
 Conjugate to \(z \mapsto \lambda z \) where \(|\lambda| \neq 1\).
 Have two fixed points, one attracting and one repelling.

- **Elliptic transformations**
 Conjugate to \(z \mapsto \lambda z \) where \(|\lambda| = 1\).
 Have two neutral fixed points.

- **Parabolic transformations**
 Conjugate to \(z \mapsto z + 1 \).
 Have one neutral fixed point.
Aside from the identity, there are three types of Möbius transformation.

- **Loxodromic transformations**
 Conjugate to $z \mapsto \lambda z$ where $|\lambda| \neq 1$.
 Have two fixed points, one attracting and one repelling.

- **Elliptic transformations**
 Conjugate to $z \mapsto \lambda z$ where $|\lambda| = 1$.
 Have two neutral fixed points.

- **Parabolic transformations**
 Conjugate to $z \mapsto z + 1$.
 Have one neutral fixed point.
Semigroups

Definition

Given a set \mathcal{F} of Möbius transformations, the *semigroup* S generated by \mathcal{F} is the set of finite (and non-empty) compositions of elements from \mathcal{F}.

We write $S = \langle \mathcal{F} \rangle$ as the semigroup generated by \mathcal{F}.
Limit sets

Let S be a semigroup of Möbius transformations.

Definition

The forwards limit set of S is the set

$$\Lambda^+(S) = \left\{ z \in \mathbb{S}^2 \mid \lim_{n \to \infty} g_n(\zeta) = z \text{ for some sequence } g_n \text{ in } S \right\}.$$

Similarly the backwards limit set of S is given by

$$\Lambda^-(S) = \left\{ z \in \mathbb{S}^2 \mid \lim_{n \to \infty} g_n^{-1}(\zeta) = z \text{ for some sequence } g_n \text{ in } S \right\}.$$

Since each g_n is an isometry of the hyperbolic metric, these definitions are independent of the choice of $\zeta \in \mathbb{B}^3$.
Three characterisations

Write

\[J(S) = \text{subset of } \mathbb{S}^2 \text{ upon which } S \text{ is not a normal family}. \]

Theorem D. Fried, S. Marotta and R. Stankewitz (2012)

For except for certain ”Elementary” semigroups,

\[
\begin{align*}
\Lambda^-(S) &= J(S) &= \{\text{Repelling fixed points of } S\} \\
\Lambda^+(S) &= J(S^{-1}) &= \{\text{Attracting fixed points of } S\}.
\end{align*}
\]
Properties (Fried, Marotta and Stankewitz)

- Both Λ^+, Λ^- are closed.

- Either $|\Lambda^+| < 3$ or Λ^+ is a perfect set. Similarly for Λ^-.

- Λ^+ is *forward invariant under* S, that is $g(\Lambda^+) \subseteq \Lambda^+$ for all $g \in S$.

- If Λ^+ contains at least two points then it is the smallest closed forwards invariant set containing at least two points.

- Λ^- is *backwards invariant under* S, that is $g^{-1}(\Lambda^-) \subseteq \Lambda^-$ for all $g \in S$.

- If Λ^- contains at least two points then it is the smallest closed backwards invariant set containing at least two points.
Properties (Fried, Marotta and Stankewitz)

- Both Λ^+, Λ^- are closed.
- Either $|\Lambda^+| < 3$ or Λ^+ is a perfect set. Similarly for Λ^-.
- Λ^+ is forward invariant under S, that is $g(\Lambda^+) \subseteq \Lambda^+$ for all $g \in S$.
- If Λ^+ contains at least two points then it is the smallest closed forwards invariant set containing at least two points.
- Λ^- is backwards invariant under S, that is $g^{-1}(\Lambda^-) \subseteq \Lambda^-$ for all $g \in S$.
- If Λ^- contains at least two points then it is the smallest closed backwards invariant set containing at least two points.
Elementary semigroups

\[\mathcal{F} = \left\{ z \mapsto e^{i\theta} z \right\} \]
\[\Lambda^- = \Lambda^+ = \emptyset. \]

\[\mathcal{F} = \{ z \mapsto 2z \} \]
\[\Lambda^- = \{ 0 \}, \quad \Lambda^+ = \{ \infty \}. \]

\[\mathcal{F} = \{ z \mapsto z + 1 \} \]
\[\Lambda^- = \Lambda^+ = \{ \infty \}. \]

\[\mathcal{F} = \left\{ z \mapsto \frac{1}{3} z, \quad z \mapsto \frac{1}{3} z + \frac{2}{3} \right\} \]
\[\Lambda^- = \{ \infty \}, \quad \Lambda^+ = \text{middle thirds Cantor set.} \]
Elementary semigroups

\[F = \{ z \mapsto e^{i\theta}z \} \]
\[\Lambda^- = \Lambda^+ = \emptyset. \]

\[F = \{ z \mapsto 2z \} \]
\[\Lambda^- = \{ 0 \}, \quad \Lambda^+ = \{ \infty \}. \]

\[F = \{ z \mapsto z + 1 \} \]
\[\Lambda^- = \Lambda^+ = \{ \infty \}. \]

\[F = \{ z \mapsto \frac{1}{3}z, \ z \mapsto \frac{1}{3}z + \frac{2}{3} \} \]
\[\Lambda^- = \{ \infty \}, \quad \Lambda^+ = \text{middle thirds Cantor set}. \]
Elementary semigroups

\[F = \{ z \mapsto e^{i\theta} z \} \]
\[\Lambda^- = \Lambda^+ = \emptyset. \]

\[F = \{ z \mapsto 2z \} \]
\[\Lambda^- = \{ 0 \}, \quad \Lambda^+ = \{ \infty \}. \]

\[F = \{ z \mapsto z + 1 \} \]
\[\Lambda^- = \Lambda^+ = \{ \infty \}. \]

\[F = \{ z \mapsto \frac{1}{3}z, \quad z \mapsto \frac{1}{3}z + \frac{2}{3} \} \]
\[\Lambda^- = \{ \infty \}, \quad \Lambda^+ = \text{middle thirds Cantor set}. \]
Elementary semigroups

\[F = \{ z \mapsto e^{i\theta} z \} \]
\[\Lambda^- = \Lambda^+ = \emptyset. \]

\[F = \{ z \mapsto 2z \} \]
\[\Lambda^- = \{0\}, \quad \Lambda^+ = \{\infty\}. \]

\[F = \{ z \mapsto z + 1 \} \]
\[\Lambda^- = \Lambda^+ = \{\infty\}. \]

\[F = \left\{ z \mapsto \frac{1}{3} z, \, z \mapsto \frac{1}{3} z + \frac{2}{3} \right\} \]
\[\Lambda^- = \{\infty\}, \quad \Lambda^+ = \text{middle thirds Cantor set}. \]
Elementary semigroups

\(\mathcal{F} = \{ z \mapsto e^{i\theta}z \} \)
\(\Lambda^- = \Lambda^+ = \emptyset. \)

\(\mathcal{F} = \{ z \mapsto 2z \} \)
\(\Lambda^- = \{0\}, \quad \Lambda^+ = \{\infty\}. \)

\(\mathcal{F} = \{ z \mapsto z + 1 \} \)
\(\Lambda^- = \Lambda^+ = \{\infty\}. \)

\(\mathcal{F} = \{ z \mapsto \frac{1}{3}z, \, \, z \mapsto \frac{1}{3}z + \frac{2}{3} \} \)
\(\Lambda^- = \{\infty\}, \quad \Lambda^+ = \text{middle thirds Cantor set}. \)
Elementary semigroups

\[\mathcal{F} = \left\{ z \mapsto e^{i\theta} z \right\} \]
\[\Lambda^- = \Lambda^+ = \emptyset. \]

\[\mathcal{F} = \{ z \mapsto 2z \} \]
\[\Lambda^- = \{0\}, \quad \Lambda^+ = \{\infty\}. \]

\[\mathcal{F} = \{ z \mapsto z + 1 \} \]
\[\Lambda^- = \Lambda^+ = \{\infty\}. \]

\[\mathcal{F} = \left\{ z \mapsto \frac{1}{3} z, \quad z \mapsto \frac{1}{3} z + \frac{2}{3} \right\} \]
\[\Lambda^- = \{\infty\}, \quad \Lambda^+ = \text{middle thirds Cantor set}. \]
Elementary semigroups

\[\mathcal{F} = \{ z \mapsto e^{i\theta} z \} \]
\[\Lambda^- = \Lambda^+ = \emptyset. \]

\[\mathcal{F} = \{ z \mapsto 2z \} \]
\[\Lambda^- = \{ 0 \}, \quad \Lambda^+ = \{ \infty \}. \]

\[\mathcal{F} = \{ z \mapsto z + 1 \} \]
\[\Lambda^- = \Lambda^+ = \{ \infty \}. \]

\[\mathcal{F} = \{ z \mapsto \frac{1}{3} z, \quad z \mapsto \frac{1}{3} z + \frac{2}{3} \} \]
\[\Lambda^- = \{ \infty \}, \quad \Lambda^+ = \text{middle thirds Cantor set}. \]
Elementary semigroups

\[F = \{ z \mapsto e^{i\theta} z \} \]
\[\Lambda^- = \Lambda^+ = \emptyset. \]

\[F = \{ z \mapsto 2z \} \]
\[\Lambda^- = \{ 0 \}, \quad \Lambda^+ = \{ \infty \}. \]

\[F = \{ z \mapsto z + 1 \} \]
\[\Lambda^- = \Lambda^+ = \{ \infty \}. \]

\[F = \left\{ z \mapsto \frac{1}{3}z, \quad z \mapsto \frac{1}{3}z + \frac{2}{3} \right\} \]
\[\Lambda^- = \{ \infty \}, \quad \Lambda^+ = \text{middle thirds Cantor set}. \]
Non-elementary Kleinian group

A Kleinian group is a group S such that the S orbit of any point in hyperbolic space is a discrete set of points.

Any Kleinian group is a semigroup with equal forwards and backwards limit sets.
Non-elementary Kleinian group

A Kleinian group is a group S such that the S orbit of any point in hyperbolic space is a discrete set of points.

Any Kleinian group is a semigroup with equal forwards and backwards limit sets.
Non-elementary Kleinian group

A Kleinian group is a group S such that the S orbit of any point in hyperbolic space is a discrete set of points.

Any Kleinian group is a semigroup with equal forwards and backwards limit sets.
Subsemigroup of a Kleinian Group

Consider the Modular group \(\Gamma \).

\(\Gamma \) may be generated by two parabolic generators, \(f, g \).
Subsemigroup of a Kleinian Group

Consider the Modular group Γ.
Γ may be generated by two parabolic generators, f, g.
Subsemigroup of a Kleinian Group

Consider the Modular group Γ.
Γ may be generated by two parabolic generators, f, g.

\[
\begin{array}{c}
\circlearrowleft \quad f \\
\circlearrowright \quad g
\end{array}
\]
Subsemigroup of a Kleinian Group

Consider the Modular group Γ.
Γ may be generated by two parabolic generators, f, g.

![Diagram showing f^{-1}, f, g^{-1}, and g.]
Subsemigroup of a Kleinian Group

Consider the Modular group Γ. Γ may be generated by two parabolic generators, f, g.

Let S be the semigroup generated by f, g.
Subsemigroup of a Kleinian Group

Consider the Modular group Γ.
Γ may be generated by two parabolic generators, f, g.

Let S be the semigroup generated by f, g.
Examples of non-elementary semigroups
Semigroups of Möbius transformations

Examples of non-elementary semigroups

Matthew Jacques (The Open University)
Schottky Semigroups
Schottky Semigroups
Schottky Semigroups

\[S = \langle \{ f, g, h, h^{-1} \} \rangle \]
Schottky Semigroups

$$S = \langle \{ f, g, h, h^{-1} \} \rangle$$
Schottky Semigroups

\[S = \langle \{f, g, h, h^{-1}\} \rangle \]
Fix a set of Möbius transformations \mathcal{F}.

A composition sequence of Möbius transformations generated by \mathcal{F} is any sequence with n^{th} term

$$F_n = f_1 \circ f_2 \circ \cdots \circ f_n,$$

where each f_i is chosen from \mathcal{F}.

Note the direction of composition.
Composition sequences

Fix a set of Möbius transformations \(\mathcal{F} \).

A composition sequence of Möbius transformations generated by \(\mathcal{F} \) is any sequence with \(n^{th} \) term

\[
F_n = f_1 \circ f_2 \circ \cdots \circ f_n,
\]

where each \(f_i \) is chosen from \(\mathcal{F} \).

Note the direction of composition.
Fix a set of Möbius transformations \mathcal{F}.

A \textit{composition sequence} of Möbius transformations generated by \mathcal{F} is any sequence with n^{th} term

$$F_n = f_1 \circ f_2 \circ \cdots \circ f_n,$$

where each f_i is chosen from \mathcal{F}.

Note the direction of composition.
Write \(f(z) = \frac{1}{z + 2} \) and \(g(z) = \frac{3}{z + 1} \). Then

\[
F_1(z) = f(z) = \frac{1}{z + 2}
\]

\[
F_2(z) = f \circ g(z) = \frac{1}{\frac{3}{2 + \frac{1}{1 + z}}}
\]

\[
F_3(z) = f \circ g \circ g(z) = \frac{1}{\frac{3}{2 + \frac{3}{1 + \frac{1}{1 + z}}}}
\]

so that \(F_n(0) \) is the \(n^{th} \) convergent of some continued fraction.
Write \(f(z) = \frac{1}{z + 2} \) and \(g(z) = \frac{3}{z + 1} \). Then

\[
F_1(z) = f(z) = \frac{1}{z + 2}
\]

\[
F_2(z) = f \circ g(z) = \frac{1}{\frac{3}{2 + \frac{1}{1 + z}}}
\]

\[
F_3(z) = f \circ g \circ g(z) = \frac{1}{\frac{3}{2 + \frac{3}{1 + \frac{1}{1 + z}}}}
\]

so that \(F_n(0) \) is the \(n^{\text{th}} \) convergent of some continued fraction.
Write \(f(z) = \frac{1}{z + 2} \) and \(g(z) = \frac{3}{z + 1} \). Then

\[
F_1(z) = f(z) = \frac{1}{z + 2}
\]

\[
F_2(z) = f \circ g(z) = \frac{1}{2 + \frac{3}{1 + z}}
\]

\[
F_3(z) = f \circ g \circ g(z) = \frac{1}{2 + \frac{3}{1 + \frac{3}{1 + z}}}
\]

so that \(F_n(0) \) is the \(n^{th} \) convergent of some continued fraction.
Write $f(z) = \frac{1}{z+2}$ and $g(z) = \frac{3}{z+1}$. Then

$$F_1(z) = f(z) = \frac{1}{z+2}$$

$$F_2(z) = f \circ g(z) = \frac{1}{2 + \frac{3}{1+z}}$$

$$F_3(z) = f \circ g \circ g(z) = \frac{1}{2 + \frac{3}{1 + \frac{3}{1+z}}}$$

so that $F_n(0)$ is the n^{th} convergent of some continued fraction.
Write $f(z) = \frac{1}{z+2}$ and $g(z) = \frac{3}{z+1}$. Then

$$F_1(z) = f(z) = \frac{1}{z+2}$$

$$F_2(z) = f \circ g(z) = \frac{1}{2 + \frac{3}{1+z}}$$

$$F_3(z) = f \circ g \circ g(z) = \frac{1}{2 + \frac{3}{1 + \frac{3}{1+z}}}$$

so that $F_n(0)$ is the n^{th} convergent of some continued fraction.
Escaping sequences

Definition

We say a sequence of Möbius transformations \(g_n \) is escaping if \(g_n \zeta \) accumulates only on the boundary of hyperbolic space. Equivalently

\[
\rho(g_n \zeta, \zeta) \to \infty \quad \text{as} \quad n \to \infty.
\]
Escaping sequences

Definition

We say a sequence of Möbius transformations \(g_n \) is escaping if \(g_n \zeta \) accumulates only on the boundary of hyperbolic space.

Equivalently

\[
\rho(g_n \zeta, \zeta) \to \infty \quad \text{as} \quad n \to \infty.
\]
Converging sequences

Definition

We say a sequence g_n converges if $g_n \zeta$ accumulates at exactly one point on the boundary of hyperbolic space.
Converging sequences

Definition

We say a sequence g_n converges if $g_n \zeta$ accumulates at exactly one point on the boundary of hyperbolic space.
Composition sequences

Escaping and converging sequences

- \(\mathcal{F} = \{ z \mapsto \frac{1}{3} z, \ z \mapsto \frac{1}{3} z + \frac{2}{3} \} \)

 Every composition sequence escapes? \(\checkmark \)

 Every composition sequence converges? \(\checkmark \)

- \(\mathcal{F} \) such that \(\mathcal{F} \) generates a group.

 Every composition sequence escapes? \(\times \)

 Every composition sequence converges? \(\times \)
Composition sequences
Escaping and converging sequences

- \(\mathcal{F} = \left\{ z \mapsto \frac{1}{3}z, \ z \mapsto \frac{1}{3}z + \frac{2}{3} \right\} \)

Every composition sequence escapes? ✔
Every composition sequence converges? ✔

- \(\mathcal{F} \) such that \(\mathcal{F} \) generates a group.

Every composition sequence escapes? ✗
Every composition sequence converges? ✗
Composition sequences

Escaping and converging sequences

• \(F = \left\{ z \mapsto \frac{1}{3}z, \ z \mapsto \frac{1}{3}z + \frac{2}{3} \right\} \)

Every composition sequence escapes? ✓

Every composition sequence converges? ✓

• \(F \) such that \(F \) generates a group.

Every composition sequence escapes? ✗

Every composition sequence converges? ✗
Composition sequences

Escaping and converging sequences

- \(F = \left\{ z \mapsto \frac{1}{3} z, \ z \mapsto \frac{1}{3} z + \frac{2}{3} \right\} \)
 - Every composition sequence escapes? √
 - Every composition sequence converges? √

- \(F \) such that \(F \) generates a group.
 - Every composition sequence escapes? ✗
 - Every composition sequence converges? ✗
• $\mathcal{F} = \left\{ z \mapsto \frac{1}{3} z, \ z \mapsto \frac{1}{3} z + \frac{2}{3} \right\}$

 Every composition sequence escapes? ✓

 Every composition sequence converges? ✓

• \mathcal{F} such that \mathcal{F} generates a group.

 Every composition sequence escapes? ✗

 Every composition sequence converges? ✗
• $\mathcal{F} = \left\{ z \mapsto \frac{1}{3} z, \ z \mapsto \frac{1}{3} z + \frac{2}{3} \right\}$
 Every composition sequence escapes? ✔
 Every composition sequence converges? ✔

• \mathcal{F} such that \mathcal{F} generates a group.
 Every composition sequence escapes? ✗
 Every composition sequence converges? ✗
Composition sequences

Escaping and converging sequences

- \(\mathcal{F} = \{ z \mapsto \frac{1}{3}z, \ z \mapsto \frac{1}{3}z + \frac{2}{3} \} \)

 Every composition sequence escapes?

 Every composition sequence converges?

- \(\mathcal{F} \) such that \(\mathcal{F} \) generates a group.

 Every composition sequence escapes?

 Every composition sequence converges?

Composition sequences Escaping and converging sequences

- $\mathcal{F} = \left\{ z \mapsto \frac{1}{3} z, \ z \mapsto \frac{1}{3} z + \frac{2}{3} \right\}$

 Every composition sequence escapes? ✓
 Every composition sequence converges? ✓

- \mathcal{F} such that \mathcal{F} generates a group.

 Every composition sequence escapes? ✗
 Every composition sequence converges? ✗
• $\mathcal{F} = \left\{ z \mapsto \frac{1}{3} z, \; z \mapsto \frac{1}{3} z + \frac{2}{3} \right\}$

 Every composition sequence escapes? ✓
 Every composition sequence converges? ✓

• \mathcal{F} such that \mathcal{F} generates a group.

 Every composition sequence escapes? ✗
 Every composition sequence converges? ✗
Composition sequences

Escaping and converging sequences

- $\mathcal{F} = \left\{ z \mapsto \frac{1}{3}z, \ z \mapsto \frac{1}{3}z + \frac{2}{3} \right\}$

 Every composition sequence escapes? ✔
 Every composition sequence converges? ✔

- \mathcal{F} such that \mathcal{F} generates a group.
 Every composition sequence escapes? ❌
 Every composition sequence converges? ❌
Question:
Given a particular composition sequence, does it converge?

Related question:
Given a set of Möbius transformations \mathcal{F} when does every composition sequence generated by \mathcal{F}

- escape,
- converge?
Question:
Given a particular composition sequence, does it converge?

Related question:
Given a set of Möbius transformations \mathcal{F} when does every composition sequence generated by \mathcal{F}

- escape,
- converge?
Let $S = \langle F \rangle$ be the semigroup generated by F.

Proposition

Every composition sequence generated by F escapes if and only if $\text{Id} \notin \overline{S}$.

Proposition

If Λ^+ and Λ^- are disjoint then every escaping composition sequence generated by F converges.

On the other hand:

Proposition

There is a dense G_δ set (w.r.t. the topology on Λ^-), D^- contained in Λ^- such that if Λ^+ meets D^-, then not every composition sequence generated by F converges.
Let $S = \langle \mathcal{F} \rangle$ be the semigroup generated by \mathcal{F}.

Proposition

*Every composition sequence generated by \mathcal{F} escapes if and only if $\text{Id} \notin \overline{S}$.***

Proposition

If Λ^+ and Λ^- are disjoint then every escaping composition sequence generated by \mathcal{F} converges.

On the other hand:

Proposition

There is a dense G_δ set (w.r.t. the topology on Λ^-), D^- contained in Λ^- such that if Λ^+ meets D^-, then not every composition sequence generated by \mathcal{F} converges.
Let $S = \langle F \rangle$ be the semigroup generated by F.

Proposition

*Every composition sequence generated by F escapes if and only if $\text{Id} \notin \overline{S}$.***

Proposition

If Λ^+ and Λ^- are disjoint then every escaping composition sequence generated by F converges.

On the other hand:

Proposition

There is a dense G_δ set (w.r.t. the topology on Λ^-), D^- contained in Λ^- such that if Λ^+ meets D^-, then not every composition sequence generated by F converges.
Let $S = \langle F \rangle$ be the semigroup generated by F.

Proposition

*Every composition sequence generated by F escapes if and only if $\text{Id} \notin \overline{S}$.**

Proposition

If Λ^+ and Λ^- are disjoint then every escaping composition sequence generated by F converges.

On the other hand:

Proposition

There is a dense G_δ set (w.r.t. the topology on Λ^-), D^- contained in Λ^- such that if Λ^+ meets D^-, then not every composition sequence generated by F converges.
Theorem

Suppose \mathcal{F} is a bounded set of Möbius transformations acting on \mathbb{B}^2, generating a non-elementary semigroup S.

Every composition sequence drawn from \mathcal{F} converges if and only if $\text{Id} \notin \overline{S}$ and Λ^+ is not the whole of \mathbb{S}^1.
Lemma

If S is a semigroup of Möbius transformations acting on \mathbb{B}^3 such that $|\Lambda^-| > 1$ and if $\Lambda^- \subseteq \Lambda^+$, then there exists a composition sequence in S that does not converge.

Whenever $\Lambda^+ = S^1$ there exists some composition sequence that does not converge.
Lemma

If S is a semigroup of Möbius transformations acting on \mathbb{B}^3 such that $|\Lambda^-| > 1$ and if $\Lambda^- \subseteq \Lambda^+$, then there exists a composition sequence in S that does not converge.

Whenever $\Lambda^+ = \mathbb{S}^1$ there exists some composition sequence that does not converge.
Optimal?

Can we drop the reference to $\Lambda^+ = S^1$, in other words is the following true?

Conjecture

Suppose \mathcal{F} is bounded set of Möbius transformations acting on \mathbb{B}^2, generating a non-elementary semigroup S. Every composition sequence drawn from \mathcal{F} converges if and only if every composition sequence escapes.
Literature

B. Aebisher
The limiting behavior of sequences of M"obius transformations

Alan Beardon
Continued Fractions, Discrete Groups and Complex Dynamics

D. Fried, S.M. Marotta and R. Stankewitz
Complex dynamics of M"obius semigroups

P. Mercat
Entropie des semi-groupes d’isomtrie d’un espace hyperbolique
Preprint.
Thank you for your attention!